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The method of multiple scales is used to determine the temporal and spatial 
variation of the amplitudes and phases of capillary-gravity waves in a deep 
liquid at or near the third-harmonic resonant wave-number. This case corre- 
sponds to a wavelength of 2-99 ern in deep water. The temporal variation shows 
that the motion is always bounded, and the general motion is an aperiodic 
travelling wave. The analysis shows that pure amplitude-modulated waves are 
not possible in this case contrary to the second-harmonic resonant case. More- 
over, pure phase-modulated waves are periodic even near resonance because the 
non-linearity adjusts the phases to  yield perfect resonance. These periodic waves 
are found to be unstable, in the sense that any disturbance would change them 
into aperiodic waves. 

1. Introduction 
Resonances in the interaction of capillary and gravity waves were found by 

Harrison (1909) and Wilton (1915) to occur at the denumerable set of critical 
wave-numbers, kk = (pg/nT)S ,  where n is an integer greater than unity, g is the 
body acceleration acting toward the liquid, and p and T are, respectively, the 
density and surface tension of the liquid. They found that the higher-order terms 
in a Stokes-type perturbation expansion are singular at  these critical wave- 
numbers. The first two critical wave-numbers correspond to wavelengths of 
2.44 and 2.99 cm in deep water. 

Wilton modified his expansion so that the first term includes the fundamental 
and its second harmonic, and obtained a definite expansion for periodic travelling 
waves at the first critical wave-number. He found that two types of periodic 
waves could exist at  this critical wave-number: one is capillary-like with a wave 
speed that decreases as the amplitude increases, and the other is gravity-like 
with a wave speed that increases as the amplitude increases. At this critical wave- 
number Wilton (1915) predicted single- and double-dimpled wave profiles, while 
Schooley (1960) observed double-dimpled wave profiles by means of enlarged 
pictures of short-fetch, wind-generated waves. Pierson & Fife (1961) determined 
a first-order expansion at  or near the first critical wave-number using the method 
of straining of co-ordinates (Van Dyke 1964). 
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Kamesvara Rav (1 920) analyzed the non-linear capillary-gravity wave 
interaction in a liquid of finite depth. He found that the second approximation is 
singular for some wave-number. He produced, experimentally, wave profiles 
near this critical wave-number which show pronounced second-harmonic dis- 
tortion. Barakat & Houston (1968) extended the analysis of Pierson & Fife to the 
case of a liquid with h i t e  depth. Nayfeh (1970a) obtained a second-order expan- 
sion for periodic travelling waves at or near the first critical wave-number in a 
liquid of finite depth using the method of multiple scales (Nayfeh 1965b, 1968). 
Nayfeh & Saric (1971) extended the latter analysis to take into account the non- 
linear pressure perturbation exerted by a subsonic external flow on the surface of 
the liquid due to the appearance of waves. 

McGoldrick (1965) analyzed the temporal resonant interactions of capillary 
and gravity waves within the framework of triad resonance (Phillips 1960; 
Benney 1962). Simmons (1969) and McGoldrick (1970b) investigated the temporal 
and spatial variation of the amplitudes and phases at the first-critical wave- 
number in a deep liquid using an averaging of the Lagrangian and the method of 
multiple scales, respectively. They found that three types of motion are possible: 
(i) pure amplitude modulation, (3) pure phase modulation, and (iii) amplitude 
and phase modulation. McGoldrick (19704  confirmed experimentally the 
theoretical results for pure amplitude-modulated waves. Nayfeh (1971 b )  
extended the analysis of McGoldrick (1970b) by including the effects of (a)  near 
resonance, ( b )  a finite liquid depth, and (c) pressure perturbations exerted by an 
external subsonic gas on the liquid surface. He found that the motion may be 
unbounded for certain gas-flow conditions, as in the cases of two-to-one (Nayfeh 
1971a) and three-to-one (Nayfeh & Kame1 1970) resonances near the equilateral 
points in the restricted problem of three bodies where the motion may be un- 
bounded. However, in the absence of the external gas, the motion is always 
bounded. Pure amplitude-modulated waves were found t o  be possible only at 
perfect resonance, and pure phase-modulated waves were found to be periodic due 
to the adjustment of the phases to yield perfect resonance. 

Nayfeh (1970b) obtained a second-order expansion for the periodic waves near 
the second critical wave-number in a deep liquid using the method of multiple 
scales. He found that three periodic waves are possible near resonance; one is a 
gravity-like and the other two are capillary-like. 

The purpose of the present paper is to investigate the temporal and spatial 
variation of the amplitudes and phases near the second critical wave-number using 
the method of multiple scales (Nayfeh 1965a). The next section contains the 
problem formulation. The non-resonant case is analysed in $ 3  while the resonant 
case is analyzed in 94. 

2. Problem formulation 
With respect to a Cartesian co-ordinate system whose 2 axis lies in the undis- 

turbed free surface and its y axis normal to this surface and directed away from 
the liquid, the dimensionless potential function #(x, y, t )  representing the liquid 
motion is governed by V y J  = 0, (2.1) 
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for -m < x <co and -a < y < q(x,t), (2.2) 
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where 7 is the elevation of the wave above the undisturbed surface. Here, dis- 
tances and time are made dimensionless using the wave-number k' of the funda- 
mental mode and the time ( g k ' ) d .  The boundary conditions are 

V$+O as y+--oo, 

7t+#,=rx4x at Y = 7 ,  

7 - +t = k2rx,(l +73f  - M 3 +  4;) at Y = 7, 

k: = k'(T/pgf). where 

To determde an approximate solution to (2.1)-(2.5) for small Uut finite e 
(i.e. maximum wave steepness ratio), we use the method of multiple scales 
(Nayfeh 1965a, 1968) by introducing the temporal scales To = t and T2 = e2t, and 
the spatial scales X, = 2 and X 2  = e2x. Moreover, we assume that y and 9 possess 
uniformly valid expansions of the form 

3 

n = l  

3 

n = l  

7 = C en7n(X07 Xz, To, T2) + O(e4), (2.7) 

4 = C en4n(x,, x,, Y, To, T2) f 0(e4). (2.8) 

The functions 7 and 4 were taken to be independent of the scales X, and 
because the resonant interactions do not occur before O(e3). Had we included 
their effects, we would have found that 7 and q5 are independent of them. 

Substituting (2.7) and (2.8) into (2.1)-(2.5), and equating coefficients of like 
powers of 6, we find that each g5n satisfies (2.3), and 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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m 

#1 = - i [A,(X,, T2)eion(Xop - B,(x,, T2)e-en(Xo9 To)] emu, (2.19) 
n=1 n 

where 0, = nX,+,u,T,, pi = n(n2k2+ 1). (2.20) 

,urn = np, or ki = 1/n. (2.21) 

The resonant wave-numbers are given by 

The non-resonant case is treated in the next section while the resonant case with 
n = 3 is treated in $4. 

3. Non-resonant case 
In  this case, we take 

rl = A,(X2, T2) eiel + Bl(X2, T,) e-iel, ( 3 . l a )  

= - ip , [A,(X2,  T2) eiel - B1(x2, T2)e-e1]ev. (3 .16)  

Substituting for 7, and g5, into the second-order equations, and solving for y2 and 

+ k2 72 = 1 - 2  

(3.6) 
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where CC stands for the complex conjugate. The particular solution of (3.4)-(3.6) 
subject to Vq53 + 0 as y -+ - co contains secular terms of the form To or X ,  exp i8, 
which make 73/71 be unbounded as To or X,+co. The condition which must be 
satisfied for there to be no secular terms is 

(3.7) 

where u, = (3k2 + 1)/2p1 is the dimensionless group velocity. 

parts in (3.7) we get aa, aa 

Letting A, = *a, exp iP1 with real al and /?, and separating real and imaginary 

(3.8) -- u+ = 0 
aT2 ax, 

aP1 ap, =' 8+k2+2k4 , -- 
aT, lax, spl (1 - 2k2) (1 + k2) a,. (3.9) 

The solution of (3.8) is a, = f ( X 2  + u.1 Tz), (3.10) 

where the function f is determined from the initial conditions. Then, the solution 
of (3.9) is 

where g is also determined from the initial conditions. Thus, the motion consists 
of amplitude- and phase-modulated waves. 

The free surface to third order is 

1+k2 
1-2k2 

2k4 + '" + 

7 = ea, cos 8, + BE ___ a2 cos 28, 

+ &3 a; cos 30, + 0(64), 
(1 - 2k2) (1 - 3k2) 

(3.12) 

where a, = f(e2x+e2ult) ,  (3.13) 

x [s2(x - ~ , t ) f ~ ( 6 ~ x  + e2u,t) + g(e2x- e2u,t)] + O(e3), (3.14) 

If the initial conditions are such that the spatial variation of a, and P, vanishes, 
then a, = constant, and 

8+k2+2k4 a:T,+const. P1= APl (1 - 2/79 (1 + k2) (3.15) 

Then, the free surface is still given by (3.12) but 

This solution is in agreement with those of Pierson & Fife (1961) and Nayfeh 
(1970b). 

Equation (3.12) shows that 7 -too as k2 = 4 or Q. These are the first two resonant 
wave-numbers. The first resonant case is analyzed by Simmons (1969), McGold- 
rick (1970b), and Nayfeh (1971b). The second resonant case is analyzed in the 
next section. 
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4. Resonant case 
In this case we assume that 

where the determining a = O( 

A. H. Nayfeh 

1 2,/3 
3 9  

k2 =-+--.@a+ .... 

(4.la) 

-a)  gives 

(4.1 b) 

With this expression for k2, (2.9)-(2.17) remain unchanged except k2 in (Zll), 
(2.14)) and (2.17) isreplacedby+,andtheright-handsideof (2.17) is augmented by 
the term (2J3/9)a(a2ql/aXf). 

The solution of the first-order problem is taken to be 

yl = Z [A,(X2, T2)ein8 + &(X2, T,) e-in81, (4.2) 
n=l ,  3 

$1 = - ipl C [An(Xl, T,) ein8 - A JX,, T,) ein81, (4.3) 
n=1,3 

where 8 = X,+PlTO 2J(3)/3). (4.4) 

Substituting for rl and $1 into the second-order equations, and solving for 7, 
and $,, we get 

qz = 4(A: + 2, A3) e2i0 - 8A 1 3  A e4io - s2A3e6i8 5 + CC, (4.5) 

+ 27i 5 Pl A2eWe6i8 3 + CC. (4.6) 

$2 = - 3ip1(A2, + A,A3) e2YeZi8 + 12ip 1 1 3  A A e4Ye4i0 

With substitution of the first- and second-order solutions into (2.15), (2.16) and 
the modified (2.17) we obtain 
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To determine the conditions which must be satisfied for there to be no secular 
terms in the solution of the third-order problem, we let 

r ] ,  = 0, 43 = e3iee3Y. (4.10) 

Substituting into (4.8) and (4.9) and equating the coefficients of each of eie and 
e3u on both sides, we obtain 

(4.11) 
aA aA 

B~- ,u~- - I  = -&pl(23A;~,+ 127B;A3+38A1A3B3) -2, 
ax2 aT2 

aA aA 
-i,~,-~+2i-~ -243uA3. (4.14) a ~ ,  ax, 

Elimination of B, and B, from (4.11)-(4.14) yields 

-- u - = Q i ~ A ~ + & i , u ~ ( 7 7 A $ ~ ~ + 3 6 9 ~ ~ A ~ +  138A1A32,), (4.15) aT2 lax, 
aA 

.__- aA3 u 3 = ~ i ~ A ~ + & i p ~ ( 2 0 5 A ~ + 2 3 0 A ~ ~ ~ A , - 2 6 1 A ~ ~ ~ ) ,  (4.16) aT2 3aX2 

where u1 = ,/(3)/2 and u3 = 54(3)/6 are the dimensionless group velocities of the 
two modes. With the secular terms eliminated, the solution for q3 becomes 

r] ,  = C1(X2, T2) eis + C3(X2, T,) e3ie +&( 165A:A3 - 1225&A3) e6se 

+wA1A2e7ie  +*Agegie + complex conjugate, (4.17) 

where the functions 0, and C3 need to be determined by carrying out the expan- 
sion to fourth order. This is not done in this paper, and these functions remain 
undetermined. 

To analyze the solutions of (4.15) and (4.16), we let A, = +,a,exp i$, with real 
a, and $,, separate real and imaginary parts and obtain 

aa, aa, -- ul- = -369 641% 1 3 sins 3 a~~ ax, (4.18) 

(4.19) 

U l;;) - = ~~a1+&pu,(77a~+369a2,a3cosa+ 138a1a$), (4.20) 

a3 (@-u B) = ~ua3+&pl(305a~cosa+230a~a3-261a~),  (4.21) 

where 01. = p3- 3$,. (4.22) 
aT, 3ax2 
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There is no general solution available yet for the solution of (4.18)-(4.21) subject 
to arbitrary initial conditions. In  what follows, we assume that the initial 
conditions are such that the spatial variation of a, and p, vanishes. The resultant 
equations are similar in form to those obtained by Nayfeh & Kamel (1970) 
for the problem of three-to-one resonances near the equilateral librations points 
in the restricted problem of three bodies. 

Using (4.22), we can combine (4.20) and (4.21) into 

a - d a  = Fa3 -__ 4 3  [951a: + 1845a!a, cosa + 155a3a2,- 205a: cos a]. (4.23) 
dT2 160 

Adding a, times (4.18) to 3a3 times (4.19), and integrating the resultant equation, 

a:+3a,2 = E,  (4.24) 
we obtain 

where E is a constant representing the energy density of the system. Equation 
(4.24) shows that the liquid surface is always bounded in contrast with the three- 
to-one resonances near the equilateral libration points (Nayfeh & Kamel) where 
the motion may be unbounded. Elimination of T2 from (4.18) and (4.23) yields 

Since a,&, = - 3a,da, from (4.24), the solution of (4.25) is 

a:a3cosa = 32 fJ --a2,+ma,-4,,2 9 5 1  4 a a 4 + L ,  , 
369Pi 

(4.26) 

where L is another constant of integration. One more integral of the motion is 
needed to complete the description of the motion; this integral seems to be avail- 
able by numerical integration only. 

The description of the motion can be reduced to the solution of a first-order 
differential equation by letting 

a2, = EC and hence a! = QE( 1 - 5). (4.27) 

Elimination of a, a?, a; from (4.18), (4.26) and (4.27) yields 

(4.28) 

32 f~ 
G(5) = 4 3 )  [ -&t2+&!&,(l -5)2+-- (4.30) 

The functions F(6)  and G(6) are shown schematically in figure 1. Since a,, and 
hence 5, must be real, F 2  must be greater than or equal to G2. The points where G 
meets F correspond to the vanishing of d<ldT2, and hence the vanishing of both 
da,ldT2 and da,ldT2. A curve such as G, which meets one branch of F at two dif- 
ferent points or G, which meets both branches corresponds to a periodic solution 
for a,, a3 and a, and hence corresponds to an aperiodic wave. 

On the other hand, a point such as P where C, touches Ir' represents an equili- 
brium point (stationary solution for a, and a3, and hence for a). Consequently, 
the motion corresponding to such a point is a periodic wave, Periodic waves 
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correspond to F' = G', which is equivalent to the stationary solutions of (4.18), 
(4.19) and (4.23). The stationary solutions of these equations are given by 

sina, = 0 or a, = nn, (4.31) 

951~!~+ 1845a~0a10cosnn+ 155a,,a2,,-205a~0cosnn- (160143) (Taa0 = 0. (4.32) 

FIGURE 1. Topology of motion. 

The periodic wave solution obtained by Nayfeh (1970b) corresponds to (4.32) 
with n = 0. Equation (4.32) is a cubic for a,, in terms of a,,cosnn. In the case 
n = 0, Nayfeh (19706) found that for any a,, and CT > - 5.835~;~ there are three 
real roots for a3,/al0. Two of these roots correspond to capillary-like waves while 
the third root corresponds to a gravity-like wave. Below (T = - 5.835~2,~ there 
is only one real root for ~ 3 o / ~ q o ,  and hence one wave profile could exist. Figure 1 
shows that any small disturbance would lead to a curve such as G, which meets 
one branch of J' at two different points, and hence the subsequent motion is an 
aperiodic wave. 

The motions discussed so far are pure phase-modulated waves (periodic 
waves), and amplitude- and phase-modulated aperiodic waves. Pure amplitude- 
modulated waves do not exist in this case because if p, and p, are constants, 
a is constant, hence (4.20), (4.21) and (4.24) give constant values for a, and a, in 
terms of the constants E and a. 

Equations (4.18)-(4.21) show that there exists a periodic wave with a, = 0. 
In  this case, a, = const., and 

p3 = (+a.-BaET,+const). (4.33) 

On the other hand, there is no solution in which a, = 0 while a, + 0. 
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5. Summary 
The method of multiple scales is used to  investigate three-to-one resonances 

(third-harmonic resonance) in the interaction of capillary and gravity waves in a 
deep liquid. Equations that govern the temporal as well as the spatial variation 
of the amplitudes and phases of the fundamental and its third harmonic are 
presented. Since there is no general solution available, yet, for these equations 
subject to arbitrary initial conditions, the temporal behaviour of the solution is 
investigated (the same results hold for the spatial variation). 

The temporal variation of the amplitudes and the phases shows that the 
motion is always bounded even at perfect resonance as in the second-harmonic 
resonant case (Simmons 1969; McGoldrick 1970b; Nayfeh 1971 b )  and in contrast 
with the cases of two-to-one (Nayfeh 1971 a) and three-to-one (Nayfeh & Kame1 
1970) resonances near the equilateral libration points in the restricted problem 
of three bodies where the motion may be unbounded. Since the introduction of 
an external subsonic gas leads to instability in the second-harmonic resonance 
case for certain flow conditions (Nayfeh 1971 b) ,  it may lead to instability in this 
case. This still needs to be investigated. 

The general motion is an aperiodic travelling wave. It is found that pure ampli- 
tude-modulated waves are not possible even at  perfect resonance, contrary to 
the second-harmonic resonant case (Simons 1969; McGoldrick 1970b; Nayfeh 
1971 b) .  However, pure phase-modulated waves are possible even near resonance 
as in the second-harmonic resonant case, and they correspond to  periodic waves. 
The non-linear motion adjusts the phases so that the wave speeds of the funda- 
mental and its third harmonic are the same, thereby producing perfect resonance. 
It is found that these periodic waves are unstable, in the sense that any distur- 
bance applied to one of them would lead to an aperiodic wave. 
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